SDK ML Python bindings API

class metavision_sdk_ml.CDProcessing

Processes CD event to compute neural network input frame (3 dimensional tensor)

This is the base class. It handles the rescaling of the events if necessary. It also provides accessors to get the shape of the output tensor. Derived class implement the computation. Calling operator() on this base class triggers the computation

static create_CDProcessingDiff(delta_t: int, network_input_width: int, network_input_height: int, max_incr_per_pixel: float = 5, clip_value_after_normalization: float = 1.0, event_input_width: int = 0, event_input_height: int = 0)metavision_sdk_ml.CDProcessing

Creates a CDProcessing diff

static create_CDProcessingEventCube(delta_t: int, network_input_width: int, network_input_height: int, num_utbins: int, split_polarity: bool, max_incr_per_pixel: float = 63.75, clip_value_after_normalization: float = 1.0, event_input_width: int = 0, event_input_height: int = 0)metavision_sdk_ml.CDProcessing

Creates a CDProcessing event_cube

static create_CDProcessingHisto(delta_t: int, network_input_width: int, network_input_height: int, max_incr_per_pixel: float = 5, clip_value_after_normalization: float = 1.0, event_input_width: int = 0, event_input_height: int = 0, use_CHW: bool = True)metavision_sdk_ml.CDProcessing

Creates a CDProcessing histo

get_frame_channels(self: metavision_sdk_ml.CDProcessing)int

Gets the number of channel in network input frame.

return

Number of channel in network input frame

get_frame_height(self: metavision_sdk_ml.CDProcessing)int

Gets the network’s input frame’s height.

return

Network input frame’s height

get_frame_shape(self: metavision_sdk_ml.CDProcessing)List[int]

Gets the shape of the frame (3 dim, either CHW or HWC)

return

a vector of sizes

get_frame_size(self: metavision_sdk_ml.CDProcessing)int

Gets the frame size.

return

the frame size in pixel (height * width * channels)

get_frame_width(self: metavision_sdk_ml.CDProcessing)int

Gets the network’s input frame’s width.

return

Network input frame’s width

init_output_tensor(self: metavision_sdk_ml.CDProcessing)numpy.ndarray[numpy.float32]
is_CHW(self: metavision_sdk_ml.CDProcessing)bool

Checks the tensor’s dimension order.

return

true if the dimension order is (channel, height, width)

process_events(*args, **kwargs)

Overloaded function.

  1. process_events(self: metavision_sdk_ml.CDProcessing, cur_frame_start_ts: int, events_np: numpy.ndarray[metavision_sdk_base._EventCD_decode], frame_tensor_np: numpy.ndarray) -> None

Takes a chunk of events (numpy array of EventCD) and updates the frame_tensor (numpy array of float)

  1. process_events(self: metavision_sdk_ml.CDProcessing, cur_frame_start_ts: int, events_buf: metavision_sdk_base.EventCDBuffer, frame_tensor_np: numpy.ndarray) -> None

Takes a chunk of events (EventCDBuffer) and updates the frame_tensor (numpy array of float)

class metavision_sdk_ml.DataAssociation(self: metavision_sdk_ml.DataAssociation, detection_merge_weight: float = 0.699999988079071, deletion_time: int = 100000, max_iou_inter_track: float = 0.5, iou_to_match_a_detection: float = 0.20000000298023224, max_iou_for_one_det_to_many_tracks: float = 0.5, use_descriptor: bool = False, number_of_consecutive_detections_to_create_a_new_track: int = 1, width: int = 640, height: int = 480, time_surface_delta_t: int = 200000, update_tracklets_between_detections: bool = True)None

Module that matches detections and builds tracklets.

Creates a DataAssociation object.

detection_merge_weight

Weight to merge a tracklet and a detection. Takes a float value in range [0; 1] (0 means use only tracklet box, 1 means use only detection box)

deletion_time

Time before deleting a tracklet no longer supported by new detections

max_iou_inter_track

Maximum IOU inter tracklet before deleting the least recently updated one

iou_to_match_a_detection

Minimum IOU to match a detection

max_iou_for_one_det_to_many_tracks

High IOU threshold above which a detection is ignored (skipped) if it is matched with multiple tracks

use_descriptor

Boolean to enable the use of a descriptor

detection_threshold

Number of consecutive detections to create a new track

width

Sensor’s width

height

Sensor’s height

time_surface_delta_t

Delta time for the timesurface

update_tracklets_between_detections

boolean to determine if tracklets are updated only when new detections are received

static get_empty_output_buffer()metavision_sdk_ml.EventTrackedBoxBuffer

This function returns an empty buffer of events of the correct type, which can later on be used as output_buf when calling process_events()

process_events(self: metavision_sdk_ml.DataAssociation, ts: int, events_np: numpy.ndarray[metavision_sdk_base._EventCD_decode], boxes_np: numpy.ndarray[Metavision::EventBbox], output_tracks_buf: metavision_sdk_ml.EventTrackedBoxBuffer)None

Computes the data association and outputs updated set of tracked boxes

:param : ts: (int) current timestamp to process :param : events_np: input chunk of events (numpy structured array of EventCD) :param : boxes_np: input detections (numpy structured array of EventBbox) :param : output_tracks_buf: output buffer of tracked boxes. It can be converted to a numpy structured array of EventTrackedBox using .numpy()

metavision_sdk_ml.EventTrackedBox : numpy.dtype for numpy structured arrays of EventTrackedBox
class metavision_sdk_ml.EventTrackedBoxBuffer(self: metavision_sdk_ml.EventTrackedBoxBuffer, size: int = 0)None

Constructor

numpy(self: metavision_sdk_ml.EventTrackedBoxBuffer, copy: bool = False)numpy.ndarray[Metavision::EventTrackedBox]
Copy

if True, allocates new memory and returns a copy of the events. If False, use the same memory

class metavision_sdk_ml.NonMaximumSuppressionWithRescaling(self: metavision_sdk_ml.NonMaximumSuppressionWithRescaling, network_num_classes: int, events_input_width: int, events_input_height: int, network_input_width: int, network_input_height: int, iou_threshold: float = 0.5)None

Rescales events from network input format to the sensor’s size and suppresses Non-Maximum overlapping boxes.

Constructs object that rescales detected boxes and suppresses Non-Maximum overlapping boxes.

num_classes

Number of possible class returned by neural network

events_input_width

Sensor’s width

events_input_height

Sensor’s height

network_input_width

Neural network input frame’s width

network_input_height

Neural network input frame’s height

iou_threshold

Threshold on IOU metrics to consider that two boxes are matching

static get_empty_output_buffer()metavision_sdk_core.EventBboxBuffer

This function returns an empty buffer of events of the correct type, which can later on be used as output_buf when calling process_events()

ignore_class_id(self: metavision_sdk_ml.NonMaximumSuppressionWithRescaling, class_id: int)None

Configures the computation to ignore some class identifier.

class_id

Identifier of the class to be ignored

process_events(*args, **kwargs)

Overloaded function.

  1. process_events(self: metavision_sdk_ml.NonMaximumSuppressionWithRescaling, input_np: numpy.ndarray[Metavision::EventBbox], output_buf: metavision_sdk_core.EventBboxBuffer) -> None

This method is used to apply the current algorithm on a chunk of events. It takes a numpy array as input and writes the results into the specified output event buffer
input_np

input chunk of events (numpy structured array)

output_buf

output buffer of events. It can be converted to a numpy structured array using .numpy()

  1. process_events(self: metavision_sdk_ml.NonMaximumSuppressionWithRescaling, input_buf: metavision_sdk_core.EventBboxBuffer, output_buf: metavision_sdk_core.EventBboxBuffer) -> None

This method is used to apply the current algorithm on a chunk of events. It takes an event buffer as input and writes the results into a distinct output event buffer
input_buf

input chunk of events (event buffer)

output_buf

output buffer of events. It can be converted to a numpy structured array using .numpy()

set_iou_threshold(self: metavision_sdk_ml.NonMaximumSuppressionWithRescaling, threshold: float)None

Sets Intersection Over Union (IOU) threshold.

threshold

Threshold on IOU metrics to consider that two boxes are matching

note

Intersection Over Union (IOU) is the ratio of the intersection area over union area